Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 469: 134035, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38490147

ABSTRACT

The trophodynamic of organophosphate esters (OPEs) has not been known well despite their widespread occurrence in the aquatic environments. In this study, ten species of crustacean, seven species of mollusk, and 22 species of fish were collected in the Laizhou Bay (LZB) to examine the occurrence, bioaccumulation, and trophic transfer, and health risk of eight traditional OPEs and three emerging oligomeric OPEs. The results showed that total concentration of OPEs was 2.04 to 28.6 ng g-1 ww in the muscle of crustacean, mollusk, and fish and 2.62 to 60.6 ng g-1 ww in the fish gill. Chlorinated OPEs averagely contributed to over 85% of total OPEs while oligomeric OPEs averagely accounted for approximate 4%. The average log apparent bioaccumulation factor (ABAF) ranged from - 0.4 L kg-1 ww for triethyl phosphate to 2.4 L kg-1 ww for resorcinol-bis (diphenyl) phosphate. Apparent trophic magnification factors (ATMF) of individual OPE were generally less than 1, demonstrating the biodilution effect of the OPEs in the organism web of LZB. Additionally, the log ABAF and ATMF of OPEs were significantly positively correlated to their log Kow but negatively correlated to their biotransformation rate constant (BRC). Therefore, the OPEs with high Kow and low BRC tend to more accumulate in the marine organisms. The health risks associated with OPEs through the consumption of the seafood from the bay were low, even at high exposure scenario.


Subject(s)
Water Pollutants, Chemical , Animals , Bays , Bioaccumulation , Biota , China , Environmental Monitoring/methods , Fishes/metabolism , Organophosphates/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 921: 171134, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401720

ABSTRACT

Sewage treatment plants (STPs) are primary sources of antibiotics in aquatic environments. However, limited research has been conducted on antibiotic attenuation in STPs and their downstream waters in low-urbanized areas. This study analyzed 15 antibiotics in the STP sewage and river water in the Zijiang River basin to quantify antibiotic transport and attenuation in the STPs and downstream. The results showed that 14 target antibiotics, except leucomycin, were detected in the STP sewage, dominated by amoxicillin (AMOX), ofloxacin, and roxithromycin. The total antibiotic concentration in the influent and effluent ranged from 158 to 1025 ng/L and 99.9 to 411 ng/L, respectively. The removal efficiency of total antibiotics ranged from 54.7 % to 75.7 % and was significantly correlated with total antibiotic concentration in the influent. The antibiotic emission from STPs into rivers was 78 kg/yr and 4.6 g/km2yr in the Zijiang River basin. The total antibiotic concentration downstream of the STP downstream was 23.6 to 213 ng/L and was significantly negatively correlated with the transport distance away from the STP outlets. Antibiotics may pose a high ecological risk to algae and low ecological risk to fish in the basin. The risk of AMOX and ciprofloxacin resistance for organisms in the basin was estimated to be moderate. This study established antibiotic removal and attenuation models in STPs and their downstream regions in a low-urbanized basin, which is important for simulating antibiotic transport in STPs and rivers worldwide.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , Sewage/analysis , Water , Environmental Monitoring , Amoxicillin , China , Water Pollutants, Chemical/analysis
3.
Environ Res ; 228: 115827, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37015301

ABSTRACT

This study firstly investigated the effects of season, land use, and socioeconomic on the spatiotemporal changes of riverine antibiotic concentrations in a low urbanized and rural watershed. In the dry and wet seasons, water samples were collected and analyzed for 15 antibiotics. The results indicated that 14 antibiotics, excluding leucomycin, were detected. Monsoon led to significantly lower total antibiotic concentrations in the wet season (22.0ngL-1) than in the dry season (51.2ngL-1). Total antibiotic concentrations were dominated by amoxicillin (below limit of detection (

Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/analysis , Seasons , Rural Population , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Amoxicillin , Trimethoprim , Erythromycin , Socioeconomic Factors , China
4.
Water Res ; 233: 119783, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36842327

ABSTRACT

Organophosphate esters (OPEs) are a group of synthetic chemicals used in numerous consumer products such as plastics and furniture. The Coronavirus Disease 2019 (COVID-19) pandemic significantly slowed anthropogenic activities and reduced the emissions of pollutants. Meanwhile, the mismanagement of large quantities of disposable plastic facemasks intensified the problems of plastic pollution and leachable pollutants in coastal waters. In this study, the joint effects of the COVID-19 outbreak on the occurrence of 12 targeted OPEs in the waters of Laizhou Bay (LZB) were investigated. The results showed that the median total OPE concentrations were 725, 363, and 109 ng L-1 in the sewage treatment plant effluent, river water, and bay water in 2021, decreased significantly (p < 0.05) by 67%, 68%, and 70%, respectively, compared with those before the COVID-19 outbreak. The release potential of targeted OPEs from disposable surgical masks in the LZB area was ∼0.24 kg yr-1, which was insufficient to increase the OPE concentration in the LZB waters. The concentrations of most individual OPEs significantly decreased in LZB waters from 2019 to 2021, except for TBOEP and TNBP. Spatially, a lower concentration of OPEs was found in the Yellow River estuary area in 2021 compared with that before the COVID-19 pandemic due to the high content of suspended particulate matter in the YR. A higher total OPE concentration was observed along the northeastern coast of LZB, mainly owing to the construction of an artificial island since 2020. The ecological risks of the OPE mixture in LZB waters were lower than those before the COVID-19 outbreak. However, TCEP, TNBP, and BDP should receive continuous attention because of their potential ecological risks to aquatic organisms.


Subject(s)
COVID-19 , Environmental Pollutants , Flame Retardants , Humans , Pandemics , Bays , Environmental Monitoring/methods , Esters/analysis , Flame Retardants/analysis , COVID-19/epidemiology , Organophosphates/analysis , Water , Plastics , China/epidemiology
5.
Environ Pollut ; 319: 121025, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36621719

ABSTRACT

Recent studies have suggested that rare earth elements (REEs) are contaminants of emerging concern. Moreover, the understanding of the occurrence and risks of REEs in river-estuary-bay systems is limited. The present study investigated the distributions, geochemical characteristics, and ecological risks of Y and 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in sediments from the Yellow River to its estuary and adjacent Laizhou Bay. The average total concentrations of Y and REEs in the sediments generally increased from the Yellow River (149 mg/kg) to the estuary (165 mg/kg) and Laizhou Bay (173 mg/kg). In the estuarine core sediments, the concentrations of Y, light REEs (LREEs), and heavy REEs (HREEs) were in the ranges of 19.5-31.4 mg/kg, 58.6-156 mg/kg, and 12.3-19.1 mg/kg, respectively, from the 1700s to 2018, showing no obvious increasing or decreasing trends. The surface and core sediments from the river to the bay were characterized by obvious fractionation between LREEs and HREEs. In sediments, Fe minerals and clay are believed to promote the accumulation of REEs, especially HREEs. The enrichment levels of REEs generally increased from the middle reaches of the Yellow River to the bay, and Gd, Tb, Dy, Ho, Yb, and Lu were the most enriched elements in the sediments. Lu had moderate potential ecological risks in sediments of "the Yellow River-estuary-bay" system, and other REEs had relatively low ecological risks. The potential ecological risk indices of Y and REEs ranged from 78.7 to 144, showing increasing trends from the Yellow River to its estuary and adjacent bay, which should raise concerns regarding emerging contaminant management around estuarine and coastal regions.


Subject(s)
Metals, Rare Earth , Rivers , Rivers/chemistry , Bays , Estuaries , Metals, Rare Earth/analysis , Clay , Geologic Sediments/chemistry , Environmental Monitoring
6.
Water Res ; 230: 119591, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36638740

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have captured global concern due to their detrimental effects on aquatic organisms. Thirty PPCPs were analyzed in the water of the Jiaozhou Bay watershed, the Yellow Sea (YS) and the East China Sea (ECS) in China to investigate the distribution and risk of PPCPs from rivers to coastal seas, which are not yet well documented. The results showed the prevalence of the target PPCPs with a downward trend in detection frequencies and total concentrations from rivers (675 ng/L on average) to bay (166 ng/L) and to coastal seas (103 ng/L). Antibiotics and personal care products (PCPs) were dominated by amoxicillin (AMOX) and p-hydroxybenzoic acid, respectively, while the dominant estrogens were inconsistent in different regions. Spatially, the total PPCP concentrations were higher in the ECS than that in the YS due to the larger quantity of sewage flowing into the ECS. Additionally, higher total PPCP concentrations were appeared in the southeastern waters outside the Yangtze estuary and Hangzhou Bay of the ECS. The PPCP mixtures might pose medium to high risk to aquatic organisms in general. The total risk quotient (RQT) of antibiotics and PCPs to algae was higher than that to crustacean and fish, while estrogens may cause the greatest damage to fish. Despite the higher PPCP concentrations in river water than in seawater, the RQT of PPCPs in bay water was generally higher than that in river water, which may be associated with the susceptibility of marine organisms. Furthermore, the high-risk pollutants that need special concern in different regions were clarified, showing that AMOX, 17ß-estradiol, and estriol deserve the highest-priority in rivers, bay, and coastal waters, respectively.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Animals , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Risk Assessment , China , Water , Aquatic Organisms , Cosmetics/analysis , Anti-Bacterial Agents , Pharmaceutical Preparations
7.
Water Res ; 219: 118559, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35576759

ABSTRACT

Globally, organophosphate esters (OPEs) have attracted substantial attention because of their ubiquity in the environment, toxicity, and potential ecological and health risks. This study comprehensively investigated the occurrence, partitioning, and spatial distribution of nine ordinary monomeric OPEs (m-OPEs) and three emerging oligomeric OPEs (o-OPEs) in a major tributary of the middle Yangtze River, which is the Zijiang River (ZR), and their associated potential health risks. Total OPE concentrations ranged from 18.8 to 439 ng L-1, 1.40 to 19.1 ng L-1, and 3.71 to 77.3 ng g-1 dw in the surface water, suspended particulate matter (SPM), and sediment, respectively. Tris (2-chloroisopropyl) phosphate (TCPP) dominated the water (61.3%) and sediment (60.1%) samples, whereas tris (2-butoxyethyl) phosphate (TBOEP) was present in the SPM (59.0%) samples. The proportion of o-OPEs was low in all three media, ranging from 0.60% to 1.90%. Field-based log Koc values of the frequently detected OPEs were higher than those predicted by EPI Suite and were negatively correlated with temperature. The spatial distribution of OPEs in the water and hierarchical cluster analysis suggested that sewage treatment plant effluents and the mining industry were the main sources of OPEs in the ZR. The total noncarcinogenic and carcinogenic risks of OPEs in the water were low at the detected concentrations, even in the high-exposure scenario.


Subject(s)
Flame Retardants , Rivers , China , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Monte Carlo Method , Organophosphates , Particulate Matter/analysis , Phosphates/analysis , Risk Assessment , Water/analysis
8.
Mar Pollut Bull ; 175: 113400, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35124376

ABSTRACT

To investigate the long-term effects of urbanization and industrialization on coastal trace metal contamination, two sediment cores, Q21 (representing 1965-2018) and Q23 (representing 1986-2018), collected from the adjacent coasts of the east old town and west new area of Qingdao were analyzed. Although the concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sc, and Zn were higher in Core Q21, the increasing trends in their concentrations and contamination levels were more obvious in Q23, especially since the 2000s. Moreover, the urbanization rates of the new area (1978-2017) were significantly positively correlated with the historical metal concentrations in Q23. Affected by the rapid socio-economic development in the new area, the combined excessive concentrations of the eight metals (excluding Sc) increased faster in Q23 (0.14-78.4 mg/kg) than Q21 (0.58-45.3 mg/kg). Overall, the sediment Core Q23 experienced higher trace metal contamination and ecological risks than Core Q21.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bays , China , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 297: 118792, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34998897

ABSTRACT

Organophosphate ester (OPE) levels, profiles, sources, spatial distribution, and partitioning were firstly studied in the rivers of the Shandong Peninsula. A total of 53 water samples and 45 sediment samples were collected from the rivers and the sewage treatment plant in the peninsula to quantitate levels of 13 targeted OPEs. Total OPE concentrations ranged from 263 to 6676 ng L-1 in the water, and 39.3-360 ng g-1 in the sediment. TEP, TCPP, and TCEP together contributed more than 90% of total OPE content. TCEP and TCPP concentrations in the Xiaoqing River sediment were increased by approximately two and seven times from 2014 to 2019, respectively. Total OPE concentrations generally increased from upstream regions to the estuaries. The main OPE sources were municipal effluent in the Jiaozhou Bay (JZB) watershed and chemical industrial wastewater in the Laizhou Bay (LZB) watershed. TCPP, TEP, and TCEP were generally approaching equilibrium between sediment and overlying water, while TNBP, TIBP, and TBOEP effectively transferred from the overlying water to the sediment. The riverine OPE flux was 0.66 ton/year to JZB and 3.58 ton/year to the LZB. TCPP and TCEP in municipal effluent, and TEP in chemical industrial wastewater should be regulated to protect Shandong Peninsula waters.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , China , Environmental Monitoring , Esters , Flame Retardants/analysis , Organophosphates , Water Pollutants, Chemical/analysis
10.
Mar Pollut Bull ; 174: 113313, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090296

ABSTRACT

The concentrations, sources, and ecological risks of nine trace elements in nine rivers flowing into Laizhou Bay were investigated. The dissolved element concentrations were 1.85-74.4, 0.01-0.47, 0.15-3.46, 1.54-19.7, 2.92-45.1, 1.72-11.5, 1.02-8.35, 0.10-1.02, and 21.4-185 µg/L for As, Cd, Co, Cr, Cu, Ni, Sc, Pb, and Zn, respectively. Zinc was the most abundant element in the sediments, with an average concentration of 106 mg/kg, followed by Cr (64.5 mg/kg), Cu (25.5 mg/kg), Pb (24.3 mg/kg), Ni (23.4 mg/kg), Co (10.9 mg/kg), Sc (8.14 mg/kg), As (6.75 mg/kg), and Cd (0.16 mg/kg). Elements including Co, Cr, Ni, and Sc were mainly from natural sources and As, Cd, Cu, Pb, and Zn were largely influenced by anthropogenic activities such as agricultural practice, industrial production, river transportation, and urbanization. Overall, the rivers flowing into Laizhou Bay experienced slight pollution and ecological risk. However, the severe element contamination in Jie River deserves continuous attention.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Anthropogenic Effects , Bays , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Rivers , Water , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 810: 152290, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34902407

ABSTRACT

Household and personal care products (HPCPs) are a kind of contaminants closely related to daily life, capturing worldwide concern. To our knowledge, this is the first attempt focusing on the spatiotemporal occurrence and mixture risk of HPCPs in the waters from rivers to Laizhou Bay. Nine HPCPs were quantitated in 216 water samples gathered from Laizhou Bay and its adjacent rivers in 2018, 2019, and 2021 to reveal the spatiotemporal occurrence and mixture ecological risks in Laizhou Bay. Eight HPCPs were detected with detection frequencies ranging from 74% to 100%. The total concentrations were in the ranges 105-721 ng L-1 in river water and 51.3-332 ng L-1 in seawater. The HPCPs were dominated by p-hydroxybenzoic and triclosan, which together contributed over 75% of the total HPCPs. The average level of the total HPCP concentration in the summer of 2018 (96.1 ng L-1) was slightly exceed that in the spring of 2019 (91.6 ng L-1), which is associated with the higher usage of HPCPs and enhanced tourism during summer. However, the highest total concentrations were found in spring of 2021 (124 ng L-1 in average), which was attribute to a higher level of methylparaben, a predominant paraben used as preservatives in commercial pharmaceuticals of China. Influenced by riverine inputs and ocean currents, higher HPCP concentrations in Laizhou Bay were found nearby the estuary of Yellow River and the southern part of the bay. Triclosan should be given constant concern considering its medium to high risks (RQ > 0.1) in nearly 80% of the water samples. The cumulative risk assessment in two approaches revealed that HPCP mixtures generally elicit medium or high risk to three main aquatic taxa. Considering the worldwide outbreak of COVID-19, the levels and risks of multiple HPCPs in natural waters requires constant attention in future studies.


Subject(s)
COVID-19 , Cosmetics , Water Pollutants, Chemical , Bays , China , Environmental Monitoring , Humans , Risk Assessment , Rivers , SARS-CoV-2 , Water Pollutants, Chemical/analysis
12.
J Hazard Mater ; 424(Pt B): 127487, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34655873

ABSTRACT

We investigated the spatiotemporal distributions, risks, and prioritization of 15 widely used antibiotics in Laizhou Bay (LZB). Water samples (145) were collected from LZB and its estuaries and analyzed. Twelve antibiotics, with total concentrations of 241-1450 and 69-289 ng L-1 in estuarine water and seawater, respectively, were detected, with the contributions of norfloxacin, ciprofloxacin, and amoxicillin exceeding 70%. Amoxicillin was firstly determined, which contributed to 20% and 46% of the total antibiotics during summer and spring, respectively. Higher antibiotic concentrations were observed in the sea located adjacent to aquaculture bases and the Yellow River Estuary, which are significantly influenced by mariculture and riverine inputs, respectively. Veterinary antibiotics showed higher total concentrations in summer compared to spring, indicating a higher degree of their usage in mariculture in summer. The antibiotic mixtures posed high risk to algae and low to medium risks to crustaceans and fish. Amoxicillin and norfloxacin were identified as high-risk pollutants. Additionally, amoxicillin and ciprofloxacin showed medium to high resistance development risks. Previous studies on antibiotics in the LZB did not determined amoxicillin and thus underestimated antibiotic contamination, ecological risk, and resistance development risk. Amoxicillin, norfloxacin, and ciprofloxacin should be prioritized in risk management.


Subject(s)
Bays , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , China , Environmental Monitoring , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
13.
J Hazard Mater ; 424(Pt B): 127482, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34655879

ABSTRACT

Heavy metal (HM) pollution in coastal ecosystems have posed threats to organisms and human worldwide. This study comprehensively investigated the concentrations, sources, trophodynamics, contamination, and risks of six HMs in the coastal ecosystem of Jiaozhou Bay, northern China, by stable isotope analysis, positive matrix factorization (PMF), and Monte Carlo simulation. Overall, Co, Cu, Ni, Pb, and Zn were significantly bio-diluted in the food web, while Cr was significantly biomagnified with a trophic magnification factor of 1.23. In addition, trophodynamics of the six HMs was different among fish, mollusk, and crustacean. Furthermore, detailed transfer pathways of six HMs in the food web including eight trophic levels were different from one another. Bioaccumulation order of the six HMs was Cu > Zn > Co, Cr, Ni, and Pb. Zinc concentrations were the highest in seawater, sediments, and organisms. Anthropogenic sources contributed to 71% for Zn, 31% for Cu and Pb, and 27% for Co, Cr, and Ni in the sediment, which was moderately contaminated with moderate ecological risk. However, the human health risk of HMs from eating seafood was relatively low. To protect the Jiaozhou Bay ecosystem, HM contamination should be further controlled in future.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Monte Carlo Method , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Sci Total Environ ; 787: 147528, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33991915

ABSTRACT

Limited information is available on the spatiotemporal occurrence and ecological risks of organophosphate esters (OPEs) in coastal environments. 175 water samples were collected in Laizhou Bay (LZB) and its rivers and estuaries during spring and summer for the determination of 12 targeted OPEs. Total concentration of OPEs ranged from 234.4 to 2892.1 ng L-1 in the river and estuarine water and 87.6 to 969.4 ng L-1 in the bay water, with medians of 1015.8 and 296.8 ng L-1, respectively, showing that riverine inputs were the major sources of OPEs in the bay. Tris (2-chloroisopropyl) phosphate (TCIPP) and triethyl phosphate (TEP) were the most abundant OPEs, with median contributions of 47% and 36% in the bay water, respectively. The total concentration of OPEs was higher in the estuarine area of the Yellow River and the southwestern coast of the LZB under the influence of riverine OPE inputs and ocean currents. In addition, the concentrations of dominant OPE species were significantly higher in the surface water than in the bottom water. The concentrations of dominant OPE species were found to be significantly lower in summer than in spring, mainly due to both precipitation and seawater dilution effects. However, the concentrations of three minor OPE species were significantly higher in summer than in spring, probably because of their high usage in summer. TCIPP and TEP concentrations were significantly negatively correlated with salinity. The targeted OPEs posed low ecological risk in the bay and moderate ecological risk in the rivers and estuaries, which was mostly ascribed to the toxicity of tris (2-chloroethyl) phosphate (TCEP) and resorcinol-bis (diphenyl) phosphate (RDP) to algae. Priority should be given to TCIPP, TEP, TCEP, and RDP in the LZB due to their high concentrations and/or toxicity.

15.
Mar Pollut Bull ; 168: 112431, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33940376

ABSTRACT

Arsenic (As) and antimony (Sb) are toxic metalloids widely distributed in coastal sediments, but are seldom studied for their geochemical baselines. In this study, sediment samples were collected from Jiaozhou Bay (JZB) to evaluate their baselines, contamination, and ecological risk. Results showed that the As and Sb concentrations were between 3.15 and 11.94 mg/kg and 0.20-0.61 mg/kg, respectively. Sc and Fe showed good performance in developing geochemical baseline functions for the metalloids. Organic matter content and clay had significant positive correlations with metalloid abundance in sediments (p < 0.01). In the JZB, As and Sb were not enriched in the sediments, with the enrichment factors below 1. Furthermore, the contamination degrees of As and Sb were low in the JZB. In addition, the ecological risks of As and Sb were relatively low in the JZB, with the risk index between 4.02 and 12.70 and 1.68-5.09, respectively.


Subject(s)
Arsenic , Water Pollutants, Chemical , Antimony/analysis , Arsenic/analysis , Bays , China , Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...